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Abstract
We examine a mixture of electrons and holes in semiconductors. It is
well known that in such a system the effective Coulomb interaction is
perfectly screened at long distances, which leads to Mott’s metal–insulator
phase transition. We show that the screening is not monotonic and at
intermediate ranges there are regions of over-screening, which at low densities
become strong enough to destroy the homogeneous mixture by clustering
charges. We suggest that this phenomenon is responsible for the broad density
distribution of the electron–hole liquid and the condensed plasma phase in
silicon suggested by Smith and Wolfe (1995 Phys. Rev. B 51 7521). When
the hole mass is set equal to the proton mass we can study properties of the
metallic hydrogen and show that at high pressures there is a phase transition
into a crystal phase of protons.

PACS numbers: 71.30.+h, 71.35.−y, 71.35.Ee

1. Introduction

In semiconductors irradiation of light creates electrons and holes. At low densities each
electron is bound with a hole creating an exciton. This process gives rise to a gas of excitons.
When the density increases above a critical value the system undergoes a first-order phase
transition into the electron–hole liquid phase. The condensation of such a liquid was first
predicted by Keldysh [1]. The key condition for its stability is the degeneracy of the electron
and hole band structures, which lowers the Fermi kinetic energy of the system. The early
photoluminescence measurements to determine the phase diagram of the electron–hole mixture
were conducted in the indirect gap semiconductors germanium and silicon, which have highly
degenerate energy bands [2–6]. Figure 1 shows the phase diagram in the uniaxially stressed
silicon by Kulakovskii et al [7]. Later in a long series of carefully analysed measurements
of the luminescence spectra in silicon Smith and Wolfe [8] suggested the existence of a third
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Figure 1. The left figure shows the gas–electron–hole liquid phase diagram of the uniaxially
stressed silicon measured by Kulakovskii et al [7] in the temperature–density plane. Symbols •
with experimental error bars mark the liquid phase. Curve 1 is the thermodynamic-equilibrium
density of the exciton gas and curve 2 is the Mott-transition line. The right figure gives the phase
diagram of the unstressed silicon measures and analysed by Smith and Wolfe [8]. The condensed
plasma phase marked with (CP) is clearly shown.

phase, which they called a condensed plasma phase. It is also a liquid-like phase because
the density remains roughly constant with increasing temperature. Figure 1 shows also their
phase diagram in the temperature–density plane. Recently interesting measurements on direct
gap semiconductors have been performed, which indicate that the electron–hole liquid is not
homogeneous, but broken into droplets [9].

From the theoretical point of view the interesting issue in the electron–hole liquid is the
screening of the Coulomb interaction. In a series of papers, Rice and his coworkers have
analysed the band structures of a large number of semiconductors and calculated the exchange
and correlation energies reaching a good agreement with experiments [10, 11]. The difficult
exchange and correlation energy calculations were simplified by Vashishta and Kalia who
derived a universal result which is independent of degeneracy and masses within the range of
values typical in semiconductors [12].

In this work, we present the microscopic, variational many-body theory based on the
Jastrow–Feenberg wavefunction which is very accurate in strongly correlated but dilute
mixtures such as the 3He–4He mixture [13, 14]. The same method has been applied
to the charged Bose gas [15]. Earlier simpler implementations were applied to positron
annihilation and also to the electron–hole mixture [16–18]. The perfect screening of the
Coulomb interaction at long distances is naturally embedded into this method, but as we shall
see the screening is not monotonic. The attraction between two impurities induced by the
many-body effects becomes at intermediate ranges stronger than the Coulomb repulsion and
that creates regions of over-screening. At the critical density the attraction becomes strong
enough to bind clusters of impurities indicating a phase transition into a mixture of charged
clusters. The effects of this new phase of charged clusters on electron–hole liquid are the issue
of this paper.

We will show first results on a negatively charged Bose gas, the bosonic electron gas,
with one or two hole impurities embedded. The advantage of this system is that one can
concentrate on the screening of the Coulomb interaction in the many-body system, separated
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from the fermionic nature. When the electron and hole masses are equal we can simulate the
annihilation of positrons into the electron gas. When the density is low enough one encounters
Mott’s metal–insulator transition. Estimates on the transition density are usually based on
estimates of the range of the exponential screening. But interestingly we find that the perfect
screening of the Coulomb interaction seen by bosonic electrons turns into an effective repulsion
at intermediate ranges. Of course, the oscillatory behaviour of the screened interaction is well
known for fermions due to the behaviour of the Lindhard function where the wavelength of
those Friedel oscillations is 2kF . Similarly the Coulomb repulsion of two hole impurities is
screened by the electron medium. Regions of over-screening appear, which bind two holes
together at much higher density than the Mott-transition density.

A finite concentration mixture of charged bosons, however, is not a stable system because
the compressibility of the charged Bose gas is negative and the pure system is stable only
because the background jellium charge is fixed in position and not allowed to collapse. That
is why the Fermi character of electrons and holes is essential for the stability of the mixture.
Yet oscillations in the effective interaction between particles in the mixture due to the bosonic
screening and Friedel oscillations make the clusterization possible and that is the new phase
we predict here.

Finally, we let the hole mass in the mixture grow up to the proton mass and discuss
properties of the liquid metallic hydrogen. We show that the liquid phase can exist only at
high pressures and at lower pressure protons form a crystal.

2. Theory

The microscopic description of the electron–hole mixture begins with a well-defined
Hamiltonian,

H = −
∑

α=e,h

Nα∑
i=1

h̄2

2mα

∇2
i +

1

2

∑
α,β=e,h

Nα,Nβ∑′

i,j

qαqβ

ε
∣∣rα

i − rβ

j

∣∣ (1)

the Greek indices α and β refer to the type of a particle (electron or hole), and Latin subscripts
i and j refer to the individual particles. The number of particles of each species is Nα , and
N = Ne + Nh is the total number of particles in the system. In terms of the concentration x of
holes, we have

Nh = xN Ne = (1 − x)N. (2)

The prime on the summation symbol in equation (1) indicates that no two pairs (i, α), (j, β)

can be the same. In semiconductors the masses are determined by the band structure and
Coulomb forces between charges qe = −qh = |e| are reduced by the dielectric constant ε.
In the jellium model we add fictitious, uncorrelated background particles with infinite mass,
which neutralize the charge. The required number of them is Nb = |Ne −Nh| and their charge
qb is such that the total charge is zero, Nbqb + Neqe + Nhqh = 0. These localized background
particles have no other structure or interaction with electrons or holes besides the Coulomb
interaction.

It is customary to use excitonic units where energies are measured in units of the binding
energy of the electron–hole pair, called excitonic Rydberg Ex = µe4/(2h̄2ε2) with the reduced
mass µ = memh/(me + mh). The length unit is then ax = h̄2ε/(µe2) = a0meε/µ in
terms of the Bohr radius a0. All distances are calculated in units of r0 = (3V/(4πNe))

1/3,
the average distance between electrons in the volume V , and all momenta in units of
r−1

0 . The ratio rs = r0/ax defines the usual dimensionless density parameter. The Fermi
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momentum of electrons, kFe = (3π2ρe/νe)
1/3, depends on their density ρe = Ne/V and the

degeneracy νe of the conduction bands. Similarly we define the Fermi momentum of holes
kFh = (3π2ρh/νh)

1/3, where νh is the degeneracy of the hole bands. We allow the hole
concentration x to vary and thus kFh = kFe[νex/(νh(1 − x))]1/3.

2.1. Euler equations for the electron–hole mixture

The Jastrow method [13, 19, 20] makes a variational ansatz for the ground-state wavefunction
of the form

�0
({

r(α)
i

}) = e
1
2 U({r(α)

i })�
({

r(α)
i

})
U

({
r(α)
i

}) = 1

2!

∑
α,β

Nα,Nβ∑′

i,j

uα,β(ri , rj ). (3)

Here the shorthand notation
({

r(α)
i

})
in the list of arguments refers to the full list(

r(e)
1 , . . . , r(e)

Ne
, r(h)

1 , . . . , r(h)
Nh

)
, and �0

({
r(α)
i

})
is a product of Slater determinants of plane

waves ensuring the required antisymmetry of the fermions. For bosons �
({

r(α)
i

}) = 1. In the
pair correlation functions uαβ(ri , rj ) the species superscripts determine the type of correlation.
All these functions are determined from the variational principle [14] using the Euler equations

δE

δuαβ(ri , rj )
= 0 (4)

where

E = 〈�0|H |�0〉
〈�0|�0〉 (5)

is the variational energy expectation value.
The key ingredients of the theory are, along with the correlation functions and partial

densities ρα = Nα/V , the radial-distribution functions gαβ(r) and static structure functions
Sαβ(k), which are Fourier transforms of the radial-distribution functions

Sαβ(k) = δαβ +
√

ραρβ

∫
d3r[gαβ(r) − 1] eik·r. (6)

The Euler equations are more conveniently derived using the matrix notation for 2 × 2
matrices. For example, for the interacting and non-interacting static structure functions we
use notation

S(k) ≡
(

S(ee)(k) S(eh)(k)

S(eh)(k) S(hh)(k)

)
and SF(k) ≡

(
S

(ee)
F (k) 0

0 S
(hh)
F (k)

)
(7)

where S
(αα)
F (k) is the static structure function of the non-interacting Fermi gas of the

component α

S
(αα)
F (k) =

{
3
4

k
kFα

− 1
16

(
k

kFα

)3
k � 2kFα

1 k � 2kFα.
(8)

The full set of Fermi hypernetted chain (FHNC) equations for the mixture is derived in
[17]. We are, however, interested here in cases where a simplified version called a single
loop approximation (FHNC//0) is applicable. This approximation sums self-consistently all
chain and parallel-connected diagrams, but omits propagator corrections. At high densities the
interaction effects in the electron gas become less important and the single loop approximation
gives energies and structure functions in good agreement with Monte Carlo simulations. We
expect that the same is true for the mixture also.
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We present here only the main assumptions and results within the FHNC//0 approximation
and refer to the original paper for details [14]. The HNC-equations connect the correlation
functions to the direct distribution function


αβ(r) = euαβ (r)+Nαβ(r) (9)

where the nodal sums Nαβ(r) are solved from the Ornstein–Zernike equations in momentum
space. These equations can be written in the matrix form in momentum space

Ñ(k) = 
̃(k) − X̃(k) and Ñ(k) = [X̃SF
̃](k) (10)

with a direct correlation function matrix X̃(k).
Within the single loop approximation the Fourier transform of 
αβ(r) is connected to the

structure function matrix

S(k) = SF(k) + [SFΓ̃SF](k). (11)

Without going into further details we assert that the coupled Euler equations (4) can be written
in the form

[S−1H1S−1](k) − [
S−1

F H1S−1
F

]
(k) = 2Ṽp−h(k). (12)

The matrix H1(k) has simply free particle kinetic energies in the diagonal and Ṽp−h(k) is the
Fourier transform of the so-called particle–hole interaction,

V
(αβ)

p−h (r) = [1 + 
(αβ)(r)]V (αβ)

C (r) +

[
h̄2

2mα

+
h̄2

2mβ

] ∣∣∇√
1 + 
(αβ)(r)

∣∣2
+ 
(αβ)(r)w

(αβ)

I (r)

(13)

where V
(αβ)

C (r) is the Coulomb interaction between particles α and β and w̃I(k) is the induced
interaction matrix in momentum space,

w̃I(k) = −Ṽp−h(k) − 1
2

[
S−1

F H1Γ̃ + Γ̃H1SF
−1

]
(k). (14)

Equations (12), (13) and (14) form a closed set of equations that can be solved by iteration
until convergence is reached. From these distribution and structure functions the variational
total energy E can then be calculated.

The necessary condition for the existence of a solution to the Euler equation (12) is
obtained by diagonalizing the Feynman-like matrix

diag(H1S−1) = D1/2 (15)

and requiring this the eigenvalues are real. This is equivalent to the requirement that the
eigenvalues of the matrix

H1
[
2Ṽp−h + SF

−1H1SF
−1

]
(16)

are positive definite. Diagonal elements of D1/2 are the Feynman approximations of the two
collective excitations in the mixture; the optical and acoustic modes. In the exact theory these
would be the exact energies of the collective modes in the long wavelength limit.

Let us return to the energetics of the mixture. At high densities and small values of rs the
dominating terms are the Fermi kinetic energy per electron

Te

Ne

= 3

5

(
k2
Fe

2me

+
x

(1 − x)

k2
Fh

2mh

)
(17)

= 3γ 2µ

5r2
s

(
1

ν
2/3
e me

+
1

ν
2/3
h mh

(
x

1 − x

)5/3
)

(18)
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where γ = (9π/4)1/3, and the exchange energy of the non-interacting fermions,

Eex

Ne

=
∑

α=e,h

e2

ε

∫
d3k

(2π)2

Sαα
F (k) − 1

k2
(19)

= − 3γ

2πrs

(
1

ν
1/3
e

+
1

ν
1/3
h

(
x

1 − x

)4/3
)

. (20)

The correlation energy is simplest to calculate using the coupling constant integration

Ec

Ne

= 1

πεrs

∑
αβ

qαqβ

∫ rs

0
dλ

∫ ∞

0
dk

(
S(αβ)(λ, k) − S

(αβ)

F (k)
)

(21)

and the main task is to evaluate the structure functions S(αβ)(λ, k) from the Euler
equation (12) for different values of the density parameter λ ranging from zero to rs .

2.2. One-component fluid and dilute mixture limit

The Euler equation which optimizes the one-component fluid is easily derived from
equation (12) by ignoring the matrix nature of equations

S(ee)(k) = S
(ee)
F (k)√

1 +
4me

[
S

(ee)
F (k)

]2

h̄2k2
Ṽ

(ee)
p−h(k)

(22)

and the bosonic fluid is obtained by setting S
(ee)
F = 1. In the coordinate space that becomes a

Schrödinger-like equation for the radial-distribution function,

− h̄2

me

∇2
√

g(ee)(r) +
[
V

(ee)
C (r) + w

(ee)
I (r)

]√
g(ee)(r) = 0 (23)

with the induced interaction written in the momentum space

w̃
(ee)
I (k) = − [S(ee)(k) − 1]2

2S(ee)(k)
(2te(k) + εe(k)). (24)

Here tα(k) = h̄2k2/(2mα) is the free particle kinetic energy and εe(k) = h̄2k2/(2meS
(ee)(k))

is the Feynman energy for bosonic electrons. After solving these equations the variational
energy of the system can be calculated using the coupling constant integration (21).

The single impurity limit is obtained from the mixture equations by setting 
(hh)(r) = 0
and S

(hh)
F (k) = S(hh)(k) = g(hh)(r) = 1. The Euler equation can be written in the form

S(eh)(k) = −2Ṽ
(eh)
p−h(k)S(ee)(k)

th(k) + εe(k)
. (25)

For the bosonic background particles this can again be written in the form of a Schrödinger-like
equation

− h̄2

2µ
∇2

√
g(eh)(r) +

[
V

(eh)
C (r) + w

(eh)
I (r)

]√
g(eh)(r) = 0 (26)

with the reduced mass µ and the induced interaction

w̃
(eh)
I (k) = −S(eh)(k)(S(ee)(k) − 1)

2S(ee)(k)
[te(k) + th(k) + εe(k)]. (27)

This Euler equation minimizes the chemical potential of the impurity.
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Charged impurities have two important properties which come out naturally from these
equations. The first one is the perfect screening condition, which states that the induced
interaction must screen the Coulomb interaction at long distances or equivalently at small
k. Remembering that the Coulomb interaction dominates the particle–hole potential when k
becomes small, Ṽ

(eh)
p−h(k)→Ṽ

(eh)
C (k) and using equation (14) we verify the screening property

w̃
(eh)
I (k) → −Ṽ

(eh)
C (k). Inserting the limit into equation (25) we find that S(eh)(k = 0) = 1.

The second condition is the cusp condition at r = 0, which is the result of the unscreened
Coulomb interaction dominating the small r behaviour and the condition

− h̄2

2µ
∇2

√
g(eh)(r) + V

(eh)
C (r)

√
g(eh)(r) = 0 (28)

must be satisfied in the limit r → 0, giving

d log g(eh)(r)

dr

∣∣∣∣
r=0

= −2rs . (29)

In the limit of two hole impurities we search for the solution of the (hh)-component of
equation (12) after the background (ee)-component and the one-impurity (eh)-component are
solved. We assume that the spins of the impurities are pointing to opposite directions and set
S

(hh)
F = 1. Furthermore in the diagrammatic summations no intermediate particle can be a

hole. This leads to a linear Schrödinger equation[
− h̄2

mh

∇2 + V
(hh)

eff (r) − Eb

]
φ(r) = 0 (30)

where V
(hh)

eff (r) = V
(hh)
C (r) + w

(hh)
I (r) is a local, effective interaction with the Fourier

transform of the induced interaction

w̃
(hh)
I (k) = − [S(eh)(k)]2

2S(ee)(k)
[2th(k) + εe(k)]. (31)

Only the zero energy solution Eb = 0 is consistent with a homogeneous mixture equation
and for Eb < 0 the mixture is unstable against pairing. Between two charged impurities the
Coulomb interaction is again perfectly screened by the induced potential at long distances.

3. Results

We begin the study of the electron–hole mixtures by demonstrating the importance of the
over-screened Coulomb interaction for the binding of the electron–hole pair known as the
Mott metal–insulator transition. This occurs for the bosonic electrons at about rs ≈ 6.5 in
excitonic units and at rs ≈ 5.3 for the fermionic electrons. But, already at much higher density,
rs < 2, another transition takes place where two holes form a bound pair due to the fact that
electrons over-screen the Coulomb repulsion between them and create a range of attraction
deep enough for binding.

The pure bosonic charged gas within the jellium model using the variational method has
been carefully analysed [15] and is in excellent agreement with Monte Carlo simulations. If
we set the impurity mass mh = me, the system corresponds to a positron impurity in a bosonic
electron fluid. The positive impurity collects around it a screening cloud and the distribution
of electrons is given by the radial-distribution function g(eh)(r) solved from the Euler
equation (26). The effective interaction which electrons feel around the impurity in the
Schrödinger-like Euler equation is shown in figure 2. At short ranges the 1/r Coulomb
attraction dominates, but at about r ≈ 1rsax a repulsive region develops with decreasing
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Figure 2. In the left figure are the effective potentials for one impurity in units of excitonic
Rydbergs times r2

s for those rs -values indicated in the figure. In the right figure is the maximum
of the s-wave scattering phase-shift from the effective potential as a function of rs .

density. At the same time the kinetic energy term in equation (26) diminishes like 1/r2
s . In

the figure the effective potential is multiplied by that factor. From the effective potential we
calculate the s-wave scattering phase shift and show that its maximum increases up to π as
a function rs , which tells that an electron cluster becomes bound around the impurity when
rs � 6.5. The exact limit is very difficult to reach numerically, because the effective potential
is determined iteratively. That is why we have to rely on extrapolation of the results from
rs � 6.

The height of the peak of the radial-distribution function, g(eh)(r) increases rapidly and its
width becomes narrower as a function of rs . At the same time the structure function S(eh)(k)

develops a large peak at about k = 3/r0. The normalization sets g(eh)(∞) = 1 and the perfect
screening condition requires that S(eh)(0) = 1. From the height of the peak we can calculate
the positron annihilation rate at contact λ = 12

r3
s
g(eh)(r = 0)10−9 1

s
. The results are shown in

figure 3 in comparison with measurements. The agreement is surprisingly good for bosonic
electrons. These results underline the importance of the Coulomb interaction and the exact
conditions like the cusp and perfect screening conditions derived from it. The power of these
conditions can be easily demonstrated by making the simplest parametrization

g(eh)(r) − 1 = a e−br (32)

and determining the parameters a and b in such a way that they are satisfied. The result is also
shown in figure 3 and fits perfectly well the whole metallic region. Deviations from the Bose
gas results begin from the region where the peak of the structure function or the dip in g(eh)(r)

begins to grow faster than r3
s , because the simple parametrization does not allow for a bound

state formation which is evident at low densities. Figure 3 also shows a good agreement of
our results for the correlation energy with the full fermionic calculations [23] up to rs = 3, but
above that we find a rapid decrease of the correlation energy consistent with the approaching
binding of the electron cluster around the impurity.

The effective interaction between two hole impurities V
(hh)

eff (r) defined in equation (30)
can be readily calculated after the impurity structure function S(eh)(k) is known. It has the 1/r

repulsion at short distances and the perfect screening makes it short ranged, yet the screening is
not monotonic and there are regions of over-screening. The results for equal masses me = mh

are shown for different rs-values in figure 4. They clearly demonstrate that the induced
interaction over-screens the Coulomb repulsion and the attraction grows as a function of rs .
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Figure 4. In the left figure we show the effective interaction between positive impurities in the
bosonic electron gas for the impurity mass mh = me at rs -values marked in the figure. On the right
is the phase diagram of hole impurities in the bosonic electron gas (solid curves). For comparison
we show also instability lines for impurities in the fermionic electron gas (dotted curves).

Already at rs > 2 the potential can support a bound state. In figure 4 on the right we have
collected the phase diagram for one and two impurities in the density–mass plane. The critical
value rM

s ≈ 6.5 for the Mott transition is quite independent of the mass ratio mh/me and the
critical value 1 � rP

s � 2 for pairing decreases slightly when the mass ratio increases. The
set of dashed curves in the figure gives the results where the fermionic character of electrons
is included. Critical densities are then shifted to slightly higher densities in both cases.

The full mixture of charged particles cannot phase separate globally, because the charge
must be neutralized. Yet, the mixture of charged bosons cannot be stable for any mass ratios
or finite concentrations. This is seen by studying the Feynman-like excitation modes from
equation (15). The two elementary modes are the plasmon and the sound mode, but the
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Figure 5. In the left figure we show the direct distribution functions 
(αβ)(r) for the electron–hole
mixture at rs = 1. We assume that the electron and hole masses are equal. On the right is the
total energy/electron of the mixture as a function of rs for different valence and conduction band
degeneracies, using mh = me .

sound mode cannot be stable if the structure functions satisfy the Euler equation (12). This is
because the compressibility of the charged Bose gas is always negative [15] and the only way
this system remains stable is that the background jellium charge is not allowed to collapse. In
the mixture both positive and negative particles are mobile and nothing prevents them from
increasing the density. Thus the fermionic nature of electrons and holes is essential for a stable
charged mixture.

Experimentally a mixture of electrons and holes can be created in semiconductors and
semi-metals. It is unstable against annihilation, but if the annihilation rate is slow enough then
the mixture can reach a thermodynamic equilibrium and condensate into the liquid phase. For
a review of theories we refer to the articles by Rice et al [10, 11]. Here we present results from
the variational calculations where we search for the stability limits of the zero temperature
mixture by varying the density, mass ratio and degeneracy.

We begin by solving the Euler equations (12) for the mixture when mh = me. The results
for the direct distribution functions 
(αβ)(r) are shown in figure 5 at the density rs = 1. When
the concentration of electrons and holes is equal then 
(ee)(r) = 
(hh)(r) and they differ only
when concentrations differ. 
(eh)(r) displays the attraction between electrons and holes and
the height of the peak increases with rs as in the case of a single hole impurity.

In semiconductors the degeneracy of the band structure is essential for the binding of the
electron–hole liquid. The minimum value of the sum of the kinetic and exchange energies for
non-interacting fermions is independent of the degeneracy, but the location is shifted towards
lower rs-values, whereas the correlation energy is almost independent of the degeneracy [12].
This means that the higher the degeneracy the lower the energy per electron becomes. In
figure 5 we show the total energy per electron of the electron–hole liquid as a function of rs

for different degeneracies. When there is only a single conduction and valence band, there
is no minimum in the energy, but as the degeneracy raises a minimum in the energy appears.
This minimum is below the exciton binding energy and that makes the electron–hole liquid
stable against liquid–gas transition.

In figure 6 we show the energy per electron for Si, which has six degenerate electron
bands and two degenerate hole bands. The anisotropy of the electron bands has been included
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Figure 6. In the left figure is the energy/electron of the electron–hole mixture in silicon. For
comparison we show the energy of a model system where the band structure is non-degenerate and
mh = me . In the right figure is the speed of sound of the acoustic mode as a function rs of this
model system.

in our calculation of the structure function S
(ee)
F (k) and the difference in the effective hole

masses is included in the Hartree–Fock energy following the method used by Combescot and
Nozieres [24]. For the mass of the electron we use the values m|| = 0.9163 and m⊥ = 0.1905
and the masses of the heavy and light holes are mH = 0.523 and mL = 0.154, respectively.
Since the correlation energy is fairly independent of the masses we can safely use there the
spherical approximation for electrons

me = 3

(
1

m ||
+

2

m⊥

)−1

(33)

and the average of the inverse masses of holes

mh = 2

(
1

mH
+

1

mL

)−1

. (34)

We find the energy minimum at rs = 0.89 with E/Ne = −1.61Ry. This agrees very well with
experiments as well as with the calculation of Brinkman and Rice [10] who found the energy
minimum E/Ne = −1.59Ry at rs = 0.84.

All these energy curves show a termination point when 1.1 < rs < 1.5 depending
somewhat on the degeneracy. This is the density where the mixture becomes unstable against
cluster formation. We see this by calculating the speed of sound of the acoustic excitation
mode. A typical case for equal electron and hole masses and with no degeneracy is shown in
figure 6 on the right. At rs ≈ 1.44 the speed of sound begins to drop very rapidly and no stable
solution for the mixture can be found. It indicates that the phase transition into a clustered
phase is a first-order phase transition.

Finally, in figure 7 we show the phase diagram of the electron–hole mixture in the density–
mass plane. When density is high enough a homogeneous metallic liquid exists for all mass
ratios. Yet without the band degeneracies that can exist only under pressure and at zero
pressure the mixture breaks into a liquid of charged clusters, which is a new kind of a phase.
By varying the concentration of holes one can follow how the two-hole bound state instability
also shown in figure 7 evolves into the clustering instability of the full mixture. We have not
calculated the energetics of the clustered phase, but since the energy of the mixture at the
instability is well below the free exciton energy in Si the new phase must be a low density
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Figure 8. The proton–proton components 
pp(r) and Spp(k) in the liquid metallic hydrogen for
densities marked in the figure. Increasing oscillations in 
pp(r) and increasing height of the peak
in Spp(k) indicate that the density is approaching a solidification instability.

liquid. It could be a fairly shallow minimum where the cluster size is not uniform. This could
be the phase analysed in the Wolfe and Smith experiment [8], which they call the condensed
plasma phase. In the uniaxial stressed silicon experiments [7] show a very broad luminescence
spectrum coming from the liquid phase. Since the stressing reduces the degeneracy and raises
the energy minimum of the homogeneous mixture we expect that the new clustered phase
gives a partial contribution to the luminescence spectrum and makes it broad. More recently
reflectivity experiments on a direct gap semiconductor CuCl [9] have indicated inhomogeneity
in the electron–hole liquid phase, which could be due to this new cluster phase.

In a more extreme case when we let the mass ratio mh/me grow up to 2000 we reach the
regime of the liquid metallic hydrogen. As seen from the phase diagram in figure 7 this system
is at high densities in the homogeneous metallic phase. The instability reached by decreasing
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the density does not break the system into clusters, instead we find that the new phase is
a crystal of protons. The direct correlation function 
pp(r) and structure function Spp(k)

of the proton–proton component are shown in figure 8 for three densities in the approach to
the instability. They clearly indicate a formation of an ordered phase. From the position of
the peak of the structure function we can read the reciprocal lattice constant kr ≈ 4/(rsax).
From the energetics we can also determine that the liquid metallic hydrogen can exist only at
very high pressures before it turns into metallic atomic crystal. From this work, we cannot
determine the metal–insulator transition density into the molecular H2 crystal, which is the
ground state of the electron–proton mixture at zero pressure and zero temperature. In the
phase diagram we give only a rough estimate that if mh/me � 20 then the transition from
the homogeneous liquid into solid instead of clustered liquid will take place. At large mass
ratios the atomic solid may then turn into molecular solid.

4. Summary

From our results we have concluded that many-body effects on screening of the Coulomb
interaction lead to regions of over-screening which will bind two hole impurities and cluster
electrons and holes in the full mixture of equal number of particles. The phase transition into
this new clustered phase is of the first order and occurs at much higher density than Mott’s
metal–insulator transition. We have suggested that this phase would give new insight into the
analysis of the luminescence spectra in semiconductors and recent reflectivity measurements
on direct gap semiconductors.

Within the same theoretical framework we show that the liquid metallic hydrogen can
exist only at high pressures before protons solidify into atomic metallic phase.

Acknowledgments

The work was supported, in part, by the Academy of Finland under project 100487 and the
grant from the EPSRC. We like to thank E Krotscheck, P Pietiläinen and A Kallio for many
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